![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | |
3bitr2i.2 | |
3bitr2i.3 |
Ref | Expression |
---|---|
3bitr2ri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 | |
2 | 3bitr2i.2 | . . 3 | |
3 | 1, 2 | bitr4i 252 | . 2 |
4 | 3bitr2i.3 | . 2 | |
5 | 3, 4 | bitr2i 250 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 |
This theorem is referenced by: ssrab 3577 copsex2gb 5118 relop 5158 dmopab3 5220 issref 5385 fununi 5659 dffv2 5946 dfsup2 7922 kmlem3 8553 recmulnq 9363 ovoliunlem1 21913 shne0i 26366 ssiun3 27426 cnvoprab 27546 ind1a 28034 bnj1304 33878 bnj1253 34073 dalem20 35417 rp-isfinite6 37744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |