![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3eltr3g | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
3eltr3g.1 | |
3eltr3g.2 | |
3eltr3g.3 |
Ref | Expression |
---|---|
3eltr3g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3g.2 | . . 3 | |
2 | 3eltr3g.1 | . . 3 | |
3 | 1, 2 | syl5eqelr 2550 | . 2 |
4 | 3eltr3g.3 | . 2 | |
5 | 3, 4 | syl6eleq 2555 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 |
This theorem is referenced by: rankelpr 8312 isf34lem7 8780 rmulccn 27910 xrge0mulc1cn 27923 esumpfinvallem 28080 fourierdlem62 31951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |