![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4.1 | |
3eltr4.2 | |
3eltr4.3 |
Ref | Expression |
---|---|
3eltr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4.2 | . 2 | |
2 | 3eltr4.1 | . . 3 | |
3 | 3eltr4.3 | . . 3 | |
4 | 2, 3 | eleqtrri 2544 | . 2 |
5 | 1, 4 | eqeltri 2541 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818 |
This theorem is referenced by: oancom 8089 0r 9478 1sr 9479 m1r 9480 lmxrge0 27934 brsigarn 28155 sinccvglem 29038 fouriersw 32014 bj-minftyccb 34628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |