![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | |
3eqtr2i.2 | |
3eqtr2i.3 |
Ref | Expression |
---|---|
3eqtr2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 | |
2 | 3eqtr2i.2 | . . 3 | |
3 | 1, 2 | eqtr4i 2489 | . 2 |
4 | 3eqtr2i.3 | . 2 | |
5 | 3, 4 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 |
This theorem is referenced by: indif 3739 dfrab3 3772 iunid 4385 cnvcnv 5464 cocnvcnv2 5524 fmptap 6094 fpar 6904 fodomr 7688 jech9.3 8253 cda1dif 8577 alephadd 8973 distrnq 9360 ltanq 9370 ltrnq 9378 negdiiOLD 9927 halfpm6th 10785 numma 11035 numaddc 11039 6p5lem 11053 binom2i 12277 faclbnd4lem1 12371 0.999... 13690 dfphi2 14304 mod2xnegi 14557 karatsuba 14570 1259lem1 14613 oppgtopn 16388 mgptopn 17150 ply1plusg 18266 ply1vsca 18267 ply1mulr 18268 restcld 19673 cmpsublem 19899 kgentopon 20039 txswaphmeolem 20305 dfii5 21389 itg1climres 22121 ang180lem1 23141 1cubrlem 23172 quart1lem 23186 efiatan 23243 log2cnv 23275 1sgm2ppw 23475 ppiub 23479 bposlem8 23566 bposlem9 23567 ax5seglem7 24238 usgraexmplcvtx 24405 usgraexmplcedg 24406 ipidsq 25623 ipdirilem 25744 norm3difi 26064 polid2i 26074 pjclem3 27116 cvmdi 27243 eulerpartlemt 28310 eulerpart 28321 ballotlem1 28425 ballotlemfval0 28434 ballotth 28476 subfaclim 28632 kur14lem6 28655 quad3 29024 iexpire 29122 volsupnfl 30059 areaquad 31184 wallispilem4 31850 dirkertrigeqlem3 31882 dirkercncflem1 31885 fourierswlem 32013 fouriersw 32014 zlmodzxz0 32945 linevalexample 32996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |