![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3eqtr3i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | |
3eqtr3i.2 | |
3eqtr3i.3 |
Ref | Expression |
---|---|
3eqtr3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 | |
2 | 3eqtr3i.2 | . . 3 | |
3 | 1, 2 | eqtr3i 2488 | . 2 |
4 | 3eqtr3i.3 | . 2 | |
5 | 3, 4 | eqtr3i 2488 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 |
This theorem is referenced by: un12 3661 in12 3708 indif1 3741 difundi 3749 difundir 3750 difindi 3751 difindir 3752 dif32 3760 csbvarg 3848 undif1 3903 resmpt3 5329 xp0 5430 fresaunres2 5762 fvsnun1 6106 caov12 6503 caov13 6505 caov411 6507 caovdir 6509 orduniss2 6668 fparlem3 6902 fparlem4 6903 hartogslem1 7988 kmlem3 8553 cdaassen 8583 xpcdaen 8584 halfnq 9375 reclem3pr 9448 addcmpblnr 9467 ltsrpr 9475 pn0sr 9499 sqgt0sr 9504 map2psrpr 9508 negsubdii 9928 halfpm6th 10785 i4 12270 nn0opthlem1 12348 fac4 12361 imi 12990 ef01bndlem 13919 bitsres 14123 gcdaddmlem 14166 modsubi 14558 gcdmodi 14560 numexpp1 14564 karatsuba 14570 oppgcntr 16400 frgpuplem 16790 ressmpladd 18119 ressmplmul 18120 ressmplvsca 18121 ltbwe 18137 ressply1add 18271 ressply1mul 18272 ressply1vsca 18273 sn0cld 19591 qtopres 20199 itg1addlem5 22107 cospi 22865 sincos4thpi 22906 sincos3rdpi 22909 dvlog 23032 dvlog2 23034 dvsqrt 23118 ang180lem3 23143 1cubrlem 23172 mcubic 23178 quart1lem 23186 atantayl2 23269 log2cnv 23275 log2ublem2 23278 log2ub 23280 chtub 23487 bclbnd 23555 bposlem8 23566 lgsdir2lem1 23598 lgsdir2lem5 23602 ipidsq 25623 ip1ilem 25741 ipdirilem 25744 ipasslem10 25754 siilem1 25766 hvmul2negi 25965 hvadd12i 25974 hvnegdii 25979 normlem1 26027 normlem9 26035 normsubi 26058 normpar2i 26073 polid2i 26074 chjassi 26404 chj12i 26440 pjoml2i 26503 hoadd12i 26696 lnophmlem2 26936 nmopcoadj2i 27021 partfun 27516 ffsrn 27552 archirngz 27733 sqsscirc1 27890 sigaclfu2 28121 eulerpartlemd 28305 coinflippvt 28423 ballotth 28476 gam1 28607 quad3 29024 bpoly3 29820 onint1 29914 cnambfre 30063 dvcnsqrt 30101 rabren3dioph 30749 arearect 31183 areaquad 31184 lhe4.4ex1a 31234 expgrowthi 31238 expgrowth 31240 binomcxplemnotnn0 31261 dvcosre 31706 stoweidlem34 31816 fouriersw 32014 bj-csbsn 34471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |