![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3exbii | Unicode version |
Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 |
Ref | Expression |
---|---|
3exbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 | |
2 | 1 | exbii 1667 | . 2 |
3 | 2 | 2exbii 1668 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 E. wex 1612 |
This theorem is referenced by: 4exdistr 1781 ceqsex6v 3151 oprabid 6323 dfoprab2 6343 dftpos3 6992 xpassen 7631 ellines 29802 bnj916 33991 bnj917 33992 bnj983 34009 bnj996 34013 bnj1021 34022 bnj1033 34025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |