![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3gencl | Unicode version |
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
Ref | Expression |
---|---|
3gencl.1 | |
3gencl.2 | |
3gencl.3 | |
3gencl.4 | |
3gencl.5 | |
3gencl.6 | |
3gencl.7 |
Ref | Expression |
---|---|
3gencl |
S
, , , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3gencl.3 | . . . . 5 | |
2 | df-rex 2813 | . . . . 5 | |
3 | 1, 2 | bitri 249 | . . . 4 |
4 | 3gencl.6 | . . . . 5 | |
5 | 4 | imbi2d 316 | . . . 4 |
6 | 3gencl.1 | . . . . . 6 | |
7 | 3gencl.2 | . . . . . 6 | |
8 | 3gencl.4 | . . . . . . 7 | |
9 | 8 | imbi2d 316 | . . . . . 6 |
10 | 3gencl.5 | . . . . . . 7 | |
11 | 10 | imbi2d 316 | . . . . . 6 |
12 | 3gencl.7 | . . . . . . 7 | |
13 | 12 | 3expia 1198 | . . . . . 6 |
14 | 6, 7, 9, 11, 13 | 2gencl 3140 | . . . . 5 |
15 | 14 | com12 31 | . . . 4 |
16 | 3, 5, 15 | gencl 3139 | . . 3 |
17 | 16 | com12 31 | . 2 |
18 | 17 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 E. wrex 2808 |
This theorem is referenced by: axpre-lttrn 9564 axpre-ltadd 9565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ex 1613 df-rex 2813 |
Copyright terms: Public domain | W3C validator |