MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdir Unicode version

Theorem 3impdir 1284
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impdir.1
Assertion
Ref Expression
3impdir

Proof of Theorem 3impdir
StepHypRef Expression
1 3impdir.1 . . 3
21anandirs 831 . 2
323impa 1191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973
This theorem is referenced by:  divcan7  10278  ccatrcan  12698  his7  26007  his2sub2  26010  hoadddir  26723  nndivsub  29922  eel3132  33508  3impdirp1  33613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator