![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Unicode version |
Description: More general version of 3imtr3i 265. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | |
3imtr3d.2 | |
3imtr3d.3 |
Ref | Expression |
---|---|
3imtr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 | |
2 | 3imtr3d.1 | . . 3 | |
3 | 3imtr3d.3 | . . 3 | |
4 | 2, 3 | sylibd 214 | . 2 |
5 | 1, 4 | sylbird 235 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: tz6.12i 5891 f1imass 6172 fornex 6769 tposfn2 6996 eroveu 7425 sdomel 7684 ackbij1lem16 8636 ltapr 9444 rpnnen1lem5 11241 qbtwnre 11427 om2uzlt2i 12062 m1dvdsndvds 14325 pcpremul 14367 pcaddlem 14407 pockthlem 14423 prmreclem6 14439 catidd 15077 ghmf1 16295 gexdvds 16604 sylow1lem1 16618 lt6abl 16897 ablfacrplem 17116 drnginvrn0 17414 issrngd 17510 islssd 17582 znrrg 18604 isphld 18689 cnllycmp 21456 nmhmcn 21603 minveclem7 21850 ioorcl2 21981 itg2seq 22149 dvlip2 22396 mdegmullem 22478 plyco0 22589 pilem3 22848 sincosq1sgn 22891 sincosq2sgn 22892 logcj 22991 argimgt0 22997 lgseisenlem2 23625 eengtrkg 24288 eengtrkge 24289 ubthlem2 25787 minvecolem7 25799 nmcexi 26945 lnconi 26952 pjnormssi 27087 tan2h 30047 itg2gt0cn 30070 divrngcl 30360 lshpcmp 34713 cdlemk35s 36663 cdlemk39s 36665 cdlemk42 36667 dihlspsnat 37060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |