![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3ioran | Unicode version |
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.) |
Ref | Expression |
---|---|
3ioran |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 490 | . . 3 | |
2 | 1 | anbi1i 695 | . 2 |
3 | ioran 490 | . . 3 | |
4 | df-3or 974 | . . 3 | |
5 | 3, 4 | xchnxbir 309 | . 2 |
6 | df-3an 975 | . 2 | |
7 | 2, 5, 6 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 /\ wa 369 \/ w3o 972
/\ w3a 973 |
This theorem is referenced by: 3oran 992 cadnot 1461 fbunfip 20370 wwlknndef 24737 wwlknfi 24738 clwwlknndef 24773 frgraregord013 25118 wl-nfeqfb 29990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 |
Copyright terms: Public domain | W3C validator |