MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaoian Unicode version

Theorem 3jaoian 1293
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1
3jaoian.2
3jaoian.3
Assertion
Ref Expression
3jaoian

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4
21ex 434 . . 3
3 3jaoian.2 . . . 4
43ex 434 . . 3
5 3jaoian.3 . . . 4
65ex 434 . . 3
72, 4, 63jaoi 1291 . 2
87imp 429 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  \/w3o 972
This theorem is referenced by:  xrltnsym  11372  xrlttri  11374  xrlttr  11375  qbtwnxr  11428  xltnegi  11444  xaddcom  11466  xnegdi  11469  xaddeq0  27573  3ccased  29096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975
  Copyright terms: Public domain W3C validator