![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3netr3d | Unicode version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
3netr3d.1 | |
3netr3d.2 | |
3netr3d.3 |
Ref | Expression |
---|---|
3netr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3d.2 | . 2 | |
2 | 3netr3d.1 | . . 3 | |
3 | 3netr3d.3 | . . 3 | |
4 | 2, 3 | neeqtrd 2752 | . 2 |
5 | 1, 4 | eqnetrrd 2751 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
=/= wne 2652 |
This theorem is referenced by: subrgnzr 17916 dchrisum0re 23698 pellex 30771 cdlemg9a 36358 cdlemg11aq 36364 cdlemg12b 36370 cdlemg12 36376 cdlemg13 36378 cdlemg19 36410 cdlemk3 36559 cdlemk12 36576 cdlemk12u 36598 lclkrlem2g 37240 mapdncol 37397 mapdpglem29 37427 hdmaprnlem1N 37579 hdmap14lem9 37606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 df-ne 2654 |
Copyright terms: Public domain | W3C validator |