MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr4g Unicode version

Theorem 3netr4g 2765
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
3netr4g.1
3netr4g.2
3netr4g.3
Assertion
Ref Expression
3netr4g

Proof of Theorem 3netr4g
StepHypRef Expression
1 3netr4g.1 . 2
2 3netr4g.2 . . 3
3 3netr4g.3 . . 3
42, 3neeq12i 2746 . 2
51, 4sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  =/=wne 2652
This theorem is referenced by:  aalioulem2  22729  mapdpglem18  37416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-cleq 2449  df-ne 2654
  Copyright terms: Public domain W3C validator