![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3reeanv | Unicode version |
Description: Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
3reeanv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3009 | . . 3 | |
2 | reeanv 3025 | . . . 4 | |
3 | 2 | anbi1i 695 | . . 3 |
4 | 1, 3 | bitri 249 | . 2 |
5 | df-3an 975 | . . . . 5 | |
6 | 5 | 2rexbii 2960 | . . . 4 |
7 | reeanv 3025 | . . . 4 | |
8 | 6, 7 | bitri 249 | . . 3 |
9 | 8 | rexbii 2959 | . 2 |
10 | df-3an 975 | . 2 | |
11 | 4, 9, 10 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 E. wrex 2808 |
This theorem is referenced by: imasmnd2 15957 imasgrp2 16185 imasring 17268 axeuclid 24266 lshpkrlem6 34840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ex 1613 df-nf 1617 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |