![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3syld | Unicode version |
Description: Triple syllogism deduction. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | |
3syld.2 | |
3syld.3 |
Ref | Expression |
---|---|
3syld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 | |
2 | 3syld.2 | . . 3 | |
3 | 1, 2 | syld 44 | . 2 |
4 | 3syld.3 | . 2 | |
5 | 3, 4 | syld 44 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: oaordi 7214 nnaordi 7286 fineqvlem 7754 dif1enOLD 7772 dif1en 7773 xpfi 7811 rankr1ag 8241 cfslb2n 8669 fin23lem27 8729 gchpwdom 9069 prlem934 9432 axpre-sup 9567 cju 10557 xrub 11532 facavg 12379 mulcn2 13418 o1rlimmul 13441 coprm 14241 rpexp 14261 vdwnnlem3 14515 gexdvds 16604 cnpnei 19765 comppfsc 20033 alexsubALTlem3 20549 alexsubALTlem4 20550 iccntr 21326 cfil3i 21708 bcth3 21770 lgseisenlem2 23625 usgrasscusgra 24483 usg2wlkeq 24708 nbhashuvtx1 24915 frgrawopreglem4 25047 ubthlem1 25786 staddi 27165 stadd3i 27167 addltmulALT 27365 cnre2csqlem 27892 tpr2rico 27894 mclsax 28929 dfrdg4 29600 segconeq 29660 nn0prpwlem 30140 fdc 30238 bfplem2 30319 bj-bary1lem1 34680 atexchcvrN 35164 dalem3 35388 cdleme3h 35960 cdleme21ct 36055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |