![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 4exdistr | Unicode version |
Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
Ref | Expression |
---|---|
4exdistr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1775 | . . . . 5 | |
2 | 1 | anbi2i 694 | . . . 4 |
3 | 19.42v 1775 | . . . 4 | |
4 | df-3an 975 | . . . 4 | |
5 | 2, 3, 4 | 3bitr4i 277 | . . 3 |
6 | 5 | 3exbii 1669 | . 2 |
7 | 3exdistr 1780 | . 2 | |
8 | 6, 7 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ex 1613 |
Copyright terms: Public domain | W3C validator |