![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 4sqlem18 | Unicode version |
Description: Lemma for 4sq 14482. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 | |
4sq.2 | |
4sq.3 | |
4sq.4 | |
4sq.5 | |
4sq.6 | |
4sq.7 |
Ref | Expression |
---|---|
4sqlem18 |
M
,N
P
,, , S
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.4 | . . . . 5 | |
2 | prmnn 14220 | . . . . 5 | |
3 | 1, 2 | syl 16 | . . . 4 |
4 | 3 | nncnd 10577 | . . 3 |
5 | 4 | mulid2d 9635 | . 2 |
6 | 4sq.7 | . . . . . . . . . . . 12 | |
7 | 4sq.6 | . . . . . . . . . . . . . . 15 | |
8 | ssrab2 3584 | . . . . . . . . . . . . . . 15 | |
9 | 7, 8 | eqsstri 3533 | . . . . . . . . . . . . . 14 |
10 | nnuz 11145 | . . . . . . . . . . . . . 14 | |
11 | 9, 10 | sseqtri 3535 | . . . . . . . . . . . . 13 |
12 | 4sq.1 | . . . . . . . . . . . . . . 15 | |
13 | 4sq.2 | . . . . . . . . . . . . . . 15 | |
14 | 4sq.3 | . . . . . . . . . . . . . . 15 | |
15 | 4sq.5 | . . . . . . . . . . . . . . 15 | |
16 | 12, 13, 14, 1, 15, 7, 6 | 4sqlem13 14475 | . . . . . . . . . . . . . 14 |
17 | 16 | simpld 459 | . . . . . . . . . . . . 13 |
18 | infmssuzcl 11194 | . . . . . . . . . . . . 13 | |
19 | 11, 17, 18 | sylancr 663 | . . . . . . . . . . . 12 |
20 | 6, 19 | syl5eqel 2549 | . . . . . . . . . . 11 |
21 | oveq1 6303 | . . . . . . . . . . . . 13 | |
22 | 21 | eleq1d 2526 | . . . . . . . . . . . 12 |
23 | 22, 7 | elrab2 3259 | . . . . . . . . . . 11 |
24 | 20, 23 | sylib 196 | . . . . . . . . . 10 |
25 | 24 | simprd 463 | . . . . . . . . 9 |
26 | 12 | 4sqlem2 14467 | . . . . . . . . 9 |
27 | 25, 26 | sylib 196 | . . . . . . . 8 |
28 | 27 | adantr 465 | . . . . . . 7 |
29 | simp1l 1020 | . . . . . . . . . . . . . 14 | |
30 | 29, 13 | syl 16 | . . . . . . . . . . . . 13 |
31 | 29, 14 | syl 16 | . . . . . . . . . . . . 13 |
32 | 29, 1 | syl 16 | . . . . . . . . . . . . 13 |
33 | 29, 15 | syl 16 | . . . . . . . . . . . . 13 |
34 | simp1r 1021 | . . . . . . . . . . . . 13 | |
35 | simp2ll 1063 | . . . . . . . . . . . . 13 | |
36 | simp2lr 1064 | . . . . . . . . . . . . 13 | |
37 | simp2rl 1065 | . . . . . . . . . . . . 13 | |
38 | simp2rr 1066 | . . . . . . . . . . . . 13 | |
39 | eqid 2457 | . . . . . . . . . . . . 13 | |
40 | eqid 2457 | . . . . . . . . . . . . 13 | |
41 | eqid 2457 | . . . . . . . . . . . . 13 | |
42 | eqid 2457 | . . . . . . . . . . . . 13 | |
43 | eqid 2457 | . . . . . . . . . . . . 13 | |
44 | simp3 998 | . . . . . . . . . . . . 13 | |
45 | 12, 30, 31, 32, 33, 7, 6, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 | 4sqlem17 14479 | . . . . . . . . . . . 12 |
46 | 45 | pm2.21i 131 | . . . . . . . . . . 11 |
47 | 46 | 3expia 1198 | . . . . . . . . . 10 |
48 | 47 | anassrs 648 | . . . . . . . . 9 |
49 | 48 | rexlimdvva 2956 | . . . . . . . 8 |
50 | 49 | rexlimdvva 2956 | . . . . . . 7 |
51 | 28, 50 | mpd 15 | . . . . . 6 |
52 | 51 | pm2.01da 442 | . . . . 5 |
53 | 24 | simpld 459 | . . . . . . 7 |
54 | elnn1uz2 11187 | . . . . . . 7 | |
55 | 53, 54 | sylib 196 | . . . . . 6 |
56 | 55 | ord 377 | . . . . 5 |
57 | 52, 56 | mt3d 125 | . . . 4 |
58 | 57, 20 | eqeltrrd 2546 | . . 3 |
59 | oveq1 6303 | . . . . . 6 | |
60 | 59 | eleq1d 2526 | . . . . 5 |
61 | 60, 7 | elrab2 3259 | . . . 4 |
62 | 61 | simprbi 464 | . . 3 |
63 | 58, 62 | syl 16 | . 2 |
64 | 5, 63 | eqeltrrd 2546 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 { cab 2442
=/= wne 2652 E. wrex 2808 { crab 2811
C_ wss 3475 c0 3784 class class class wbr 4452
`' ccnv 5003 ` cfv 5593 (class class class)co 6296
sup csup 7920
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cz 10889 cuz 11110
cfz 11701 cmo 11996 cexp 12166 cprime 14217 |
This theorem is referenced by: 4sqlem19 14481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-4 10621 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-gz 14448 |
Copyright terms: Public domain | W3C validator |