![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 4sqlem2 | Unicode version |
Description: Lemma for 4sq 14482. Change bound variables in . (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 |
Ref | Expression |
---|---|
4sqlem2 |
S
,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | . . 3 | |
2 | 1 | eleq2i 2535 | . 2 |
3 | id 22 | . . . . . . 7 | |
4 | ovex 6324 | . . . . . . 7 | |
5 | 3, 4 | syl6eqel 2553 | . . . . . 6 |
6 | 5 | a1i 11 | . . . . 5 |
7 | 6 | rexlimdvva 2956 | . . . 4 |
8 | 7 | rexlimivv 2954 | . . 3 |
9 | oveq1 6303 | . . . . . . . . 9 | |
10 | 9 | oveq1d 6311 | . . . . . . . 8 |
11 | 10 | oveq1d 6311 | . . . . . . 7 |
12 | 11 | eqeq2d 2471 | . . . . . 6 |
13 | 12 | 2rexbidv 2975 | . . . . 5 |
14 | oveq1 6303 | . . . . . . . . 9 | |
15 | 14 | oveq2d 6312 | . . . . . . . 8 |
16 | 15 | oveq1d 6311 | . . . . . . 7 |
17 | 16 | eqeq2d 2471 | . . . . . 6 |
18 | 17 | 2rexbidv 2975 | . . . . 5 |
19 | 13, 18 | cbvrex2v 3093 | . . . 4 |
20 | oveq1 6303 | . . . . . . . . . 10 | |
21 | 20 | oveq1d 6311 | . . . . . . . . 9 |
22 | 21 | oveq2d 6312 | . . . . . . . 8 |
23 | 22 | eqeq2d 2471 | . . . . . . 7 |
24 | oveq1 6303 | . . . . . . . . . 10 | |
25 | 24 | oveq2d 6312 | . . . . . . . . 9 |
26 | 25 | oveq2d 6312 | . . . . . . . 8 |
27 | 26 | eqeq2d 2471 | . . . . . . 7 |
28 | 23, 27 | cbvrex2v 3093 | . . . . . 6 |
29 | eqeq1 2461 | . . . . . . 7 | |
30 | 29 | 2rexbidv 2975 | . . . . . 6 |
31 | 28, 30 | syl5bb 257 | . . . . 5 |
32 | 31 | 2rexbidv 2975 | . . . 4 |
33 | 19, 32 | syl5bb 257 | . . 3 |
34 | 8, 33 | elab3 3253 | . 2 |
35 | 2, 34 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
{ cab 2442 E. wrex 2808 cvv 3109
(class class class)co 6296 caddc 9516 2 c2 10610 cz 10889 cexp 12166 |
This theorem is referenced by: 4sqlem3 14468 4sqlem4 14470 4sqlem18 14480 4sq 14482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |