MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5re Unicode version

Theorem 5re 10639
Description: The number 5 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
5re

Proof of Theorem 5re
StepHypRef Expression
1 df-5 10622 . 2
2 4re 10637 . . 3
3 1re 9616 . . 3
42, 3readdcli 9630 . 2
51, 4eqeltri 2541 1
Colors of variables: wff setvar class
Syntax hints:  e.wcel 1818  (class class class)co 6296   cr 9512  1c1 9514   caddc 9516  4c4 10612  5c5 10613
This theorem is referenced by:  5cn  10640  6re  10641  6pos  10659  3lt5  10734  2lt5  10735  1lt5  10736  5lt6  10737  4lt6  10738  5lt7  10743  4lt7  10744  5lt8  10750  4lt8  10751  5lt9  10758  4lt9  10759  5lt10  10767  4lt10  10768  ef01bndlem  13919  prmlem1  14593  sralem  17823  srasca  17827  zlmlem  18554  zlmsca  18558  ppiublem1  23477  ppiub  23479  bposlem3  23561  bposlem4  23562  bposlem5  23563  bposlem6  23564  bposlem8  23566  bposlem9  23567  lgsdir2lem1  23598  cchhllem  24190  ex-id  25155  resvvsca  27824  zlmds  27945  zlmtset  27946  problem2  29020  5recm6rec  29114  stoweidlem13  31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-i2m1 9581  ax-1ne0 9582  ax-rrecex 9585  ax-cnre 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299  df-2 10619  df-3 10620  df-4 10621  df-5 10622
  Copyright terms: Public domain W3C validator