MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Unicode version

Theorem a1bi 337
Description: Inference rule introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1
Assertion
Ref Expression
a1bi

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2
2 biimt 335 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  mt2bi  338  pm4.83  929  truimfal  1428  equsalhw  1945  equsal  2036  sbequ8ALT  2148  ralv  3123  reusv5OLD  4662  relop  5158  acsfn0  15057  cmpsub  19900  ballotlemodife  28436  wl-equsald  29992  bj-trut  34171  bj-equsalv  34309  bj-equsalvv  34310  bj-ralvw  34441  lub0N  34914  glb0N  34918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator