![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > a1bi | Unicode version |
Description: Inference rule introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 |
Ref | Expression |
---|---|
a1bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 | |
2 | biimt 335 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: mt2bi 338 pm4.83 929 truimfal 1428 equsalhw 1945 equsal 2036 sbequ8ALT 2148 ralv 3123 reusv5OLD 4662 relop 5158 acsfn0 15057 cmpsub 19900 ballotlemodife 28436 wl-equsald 29992 bj-trut 34171 bj-equsalv 34309 bj-equsalvv 34310 bj-ralvw 34441 lub0N 34914 glb0N 34918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |