MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1tru Unicode version

Theorem a1tru 1411
Description: Anything implies . (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
a1tru

Proof of Theorem a1tru
StepHypRef Expression
1 tru 1399 . 2
21a1i 11 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4   wtru 1396
This theorem is referenced by:  truanOLD  1413  disjprg  4448  euotd  4753  elabrex  6155  riota5f  6282  ac6s6  30580  elabrexg  31430  lhpexle1  35732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398
  Copyright terms: Public domain W3C validator