MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a2and Unicode version

Theorem a2and 811
Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypotheses
Ref Expression
a2and.1
a2and.2
Assertion
Ref Expression
a2and

Proof of Theorem a2and
StepHypRef Expression
1 a2and.2 . . . . . . 7
21expd 436 . . . . . 6
32imdistand 692 . . . . 5
43imp 429 . . . 4
5 a2and.1 . . . . 5
65imp 429 . . . 4
74, 6embantd 54 . . 3
87ex 434 . 2
98com23 78 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  telgsumfzs  17018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator