![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > a2and | Unicode version |
Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
a2and.1 | |
a2and.2 |
Ref | Expression |
---|---|
a2and |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2and.2 | . . . . . . 7 | |
2 | 1 | expd 436 | . . . . . 6 |
3 | 2 | imdistand 692 | . . . . 5 |
4 | 3 | imp 429 | . . . 4 |
5 | a2and.1 | . . . . 5 | |
6 | 5 | imp 429 | . . . 4 |
7 | 4, 6 | embantd 54 | . . 3 |
8 | 7 | ex 434 | . 2 |
9 | 8 | com23 78 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: telgsumfzs 17018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |