![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > abbi | Unicode version |
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
abbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2445 | . . 3 | |
2 | hbab1 2445 | . . 3 | |
3 | 1, 2 | cleqh 2572 | . 2 |
4 | abid 2444 | . . . 4 | |
5 | abid 2444 | . . . 4 | |
6 | 4, 5 | bibi12i 315 | . . 3 |
7 | 6 | albii 1640 | . 2 |
8 | 3, 7 | bitr2i 250 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 A. wal 1393
= wceq 1395 e. wcel 1818 { cab 2442 |
This theorem is referenced by: abbii 2591 abbid 2592 nabbi 2790 nabbiOLD 2791 rabbi 3036 sbcbi2 3378 iuneq12df 4354 dfiota2 5557 iotabi 5565 uniabio 5566 iotanul 5571 karden 8334 iuneq12daf 27425 abeq12 30564 elnev 31345 rabeqsn 32919 csbingVD 33684 csbsngVD 33693 csbxpgVD 33694 csbrngVD 33696 csbunigVD 33698 csbfv12gALTVD 33699 bj-cleq 34519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |