![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > abbi1dv | Unicode version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
abbi1dv.1 |
Ref | Expression |
---|---|
abbi1dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1dv.1 | . . . 4 | |
2 | 1 | bicomd 201 | . . 3 |
3 | 2 | abbi2dv 2594 | . 2 |
4 | 3 | eqcomd 2465 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442 |
This theorem is referenced by: abidnf 3268 csbtt 3445 csbie2g 3465 abvor0 3803 csbvarg 3848 iinxsng 4407 enfin2i 8722 fin1a2lem11 8811 hashf1 12506 shftuz 12902 psrbaglefi 18023 psrbaglefiOLD 18024 vmappw 23390 predep 29272 hdmap1fval 37524 hdmapfval 37557 hgmapfval 37616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |