Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi1dvOLD Unicode version

Theorem abbi1dvOLD 2596
 Description: Obsolete proof of abbidv 2593 as of 16-Nov-2019. (Contributed by NM, 9-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abbi1dv.1
Assertion
Ref Expression
abbi1dvOLD
Distinct variable groups:   ,   ,

Proof of Theorem abbi1dvOLD
StepHypRef Expression
1 abbi1dv.1 . . 3
21alrimiv 1719 . 2
3 abeq1 2582 . 2
42, 3sylibr 212 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  {cab 2442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452
 Copyright terms: Public domain W3C validator