![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > abeq2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeqi.1 |
Ref | Expression |
---|---|
abeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | 2 | abeq2d 2583 | . 2 |
4 | 3 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
wtru 1396 e. wcel 1818 { cab 2442 |
This theorem is referenced by: abeq1i 2586 rabid 3034 vex 3112 csbco 3444 csbnestgf 3840 elsn 4043 funcnv3 5654 opabiota 5936 zfrep6 6768 tfrlem4 7067 tfrlem8 7072 tfrlem9 7073 ixpn0 7521 mapsnen 7613 sbthlem1 7647 dffi3 7911 1idpr 9428 ltexprlem1 9435 ltexprlem2 9436 ltexprlem3 9437 ltexprlem4 9438 ltexprlem6 9440 ltexprlem7 9441 reclem2pr 9447 reclem3pr 9448 reclem4pr 9449 supsrlem 9509 dissnref 20029 dissnlocfin 20030 txbas 20068 xkoccn 20120 xkoptsub 20155 xkoco1cn 20158 xkoco2cn 20159 xkoinjcn 20188 mbfi1fseqlem4 22125 avril1 25171 rnmpt2ss 27515 setinds 29210 wfrlem2 29344 wfrlem3 29345 wfrlem4 29346 wfrlem9 29351 frrlem2 29388 frrlem3 29389 frrlem4 29390 frrlem5e 29395 frrlem11 29399 sdclem1 30236 csbcom2fi 30534 csbgfi 30535 bnj1436 33898 bnj916 33991 bnj983 34009 bnj1083 34034 bnj1245 34070 bnj1311 34080 bnj1371 34085 bnj1398 34090 bj-ififc 34166 bj-elsngl 34526 bj-projun 34552 bj-projval 34554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |