Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abid2fOLD Unicode version

Theorem abid2fOLD 2649
 Description: Obsolete proof of abid2f 2648 as of 17-Nov-2019. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abid2f.1
Assertion
Ref Expression
abid2fOLD

Proof of Theorem abid2fOLD
StepHypRef Expression
1 abid2f.1 . . . . 5
2 nfab1 2621 . . . . 5
31, 2cleqf 2646 . . . 4
4 abid 2444 . . . . . 6
54bibi2i 313 . . . . 5
65albii 1640 . . . 4
73, 6bitri 249 . . 3
8 biid 236 . . 3
97, 8mpgbir 1622 . 2
109eqcomi 2470 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  {cab 2442  F/_wnfc 2605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607
 Copyright terms: Public domain W3C validator