![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > abidnf | Unicode version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1859 | . . 3 | |
2 | nfcr 2610 | . . . 4 | |
3 | 2 | nfrd 1875 | . . 3 |
4 | 1, 3 | impbid2 204 | . 2 |
5 | 4 | abbi1dv 2595 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 e. wcel 1818 { cab 2442
F/_ wnfc 2605 |
This theorem is referenced by: dedhb 3269 nfopd 4234 nfimad 5351 nffvd 5880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |