![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > abs1m | Unicode version |
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.) |
Ref | Expression |
---|---|
abs1m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . . 6 | |
2 | abs0 13118 | . . . . . 6 | |
3 | 1, 2 | syl6eq 2514 | . . . . 5 |
4 | oveq2 6304 | . . . . 5 | |
5 | 3, 4 | eqeq12d 2479 | . . . 4 |
6 | 5 | anbi2d 703 | . . 3 |
7 | 6 | rexbidv 2968 | . 2 |
8 | simpl 457 | . . . . 5 | |
9 | 8 | cjcld 13029 | . . . 4 |
10 | abscl 13111 | . . . . . 6 | |
11 | 10 | adantr 465 | . . . . 5 |
12 | 11 | recnd 9643 | . . . 4 |
13 | abs00 13122 | . . . . . 6 | |
14 | 13 | necon3bid 2715 | . . . . 5 |
15 | 14 | biimpar 485 | . . . 4 |
16 | 9, 12, 15 | divcld 10345 | . . 3 |
17 | absdiv 13128 | . . . . 5 | |
18 | 9, 12, 15, 17 | syl3anc 1228 | . . . 4 |
19 | abscj 13112 | . . . . . 6 | |
20 | 19 | adantr 465 | . . . . 5 |
21 | absidm 13156 | . . . . . 6 | |
22 | 21 | adantr 465 | . . . . 5 |
23 | 20, 22 | oveq12d 6314 | . . . 4 |
24 | 12, 15 | dividd 10343 | . . . 4 |
25 | 18, 23, 24 | 3eqtrd 2502 | . . 3 |
26 | 8, 9, 12, 15 | divassd 10380 | . . . 4 |
27 | 12 | sqvald 12307 | . . . . . 6 |
28 | absvalsq 13113 | . . . . . . 7 | |
29 | 28 | adantr 465 | . . . . . 6 |
30 | 27, 29 | eqtr3d 2500 | . . . . 5 |
31 | 12, 12, 15, 30 | mvllmuld 10401 | . . . 4 |
32 | 16, 8 | mulcomd 9638 | . . . 4 |
33 | 26, 31, 32 | 3eqtr4d 2508 | . . 3 |
34 | fveq2 5871 | . . . . . 6 | |
35 | 34 | eqeq1d 2459 | . . . . 5 |
36 | oveq1 6303 | . . . . . 6 | |
37 | 36 | eqeq2d 2471 | . . . . 5 |
38 | 35, 37 | anbi12d 710 | . . . 4 |
39 | 38 | rspcev 3210 | . . 3 |
40 | 16, 25, 33, 39 | syl12anc 1226 | . 2 |
41 | ax-icn 9572 | . . . 4 | |
42 | absi 13119 | . . . . 5 | |
43 | it0e0 10786 | . . . . . 6 | |
44 | 43 | eqcomi 2470 | . . . . 5 |
45 | 42, 44 | pm3.2i 455 | . . . 4 |
46 | fveq2 5871 | . . . . . . 7 | |
47 | 46 | eqeq1d 2459 | . . . . . 6 |
48 | oveq1 6303 | . . . . . . 7 | |
49 | 48 | eqeq2d 2471 | . . . . . 6 |
50 | 47, 49 | anbi12d 710 | . . . . 5 |
51 | 50 | rspcev 3210 | . . . 4 |
52 | 41, 45, 51 | mp2an 672 | . . 3 |
53 | 52 | a1i 11 | . 2 |
54 | 7, 40, 53 | pm2.61ne 2772 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
E. wrex 2808 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
ci 9515
cmul 9518 cdiv 10231 2 c2 10610 cexp 12166 ccj 12929 cabs 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 |
Copyright terms: Public domain | W3C validator |