MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abss Unicode version

Theorem abss 3568
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss
Distinct variable group:   ,

Proof of Theorem abss
StepHypRef Expression
1 abid2 2597 . . 3
21sseq2i 3528 . 2
3 ss2ab 3567 . 2
42, 3bitr3i 251 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  e.wcel 1818  {cab 2442  C_wss 3475
This theorem is referenced by:  abssdv  3573  rabss  3576  uniiunlem  3587  iunss  4371  moabex  4711  reliun  5128  axdc2lem  8849  mptelee  24198  fpwrelmap  27556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator