![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ac2 | Unicode version |
Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 8863 is easier to understand.) Note: aceq0 8520 shows the logical equivalence to ax-ac 8860. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) |
Ref | Expression |
---|---|
ac2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac 8860 | . 2 | |
2 | aceq0 8520 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
A. wral 2807 E. wrex 2808 E! wreu 2809 |
This theorem is referenced by: ac3 8863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-ac 8860 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-reu 2814 |
Copyright terms: Public domain | W3C validator |