Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4 Unicode version

Theorem ac4 8876
 Description: Equivalent of Axiom of Choice. We do not insist that be a function. However, theorem ac5 8878, derived from this one, shows that this form of the axiom does imply that at least one such set whose existence we assert is in fact a function. Axiom of Choice of [TakeutiZaring] p. 83. Takeuti and Zaring call this "weak choice" in contrast to "strong choice" E. A. ( =/= ->(  )e. ), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice," Fundamenta Mathematica, 71, 43-62 (1971). Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 8892. (Contributed by NM, 21-Jul-1996.)
Assertion
Ref Expression
ac4
Distinct variable group:   ,,

Proof of Theorem ac4
StepHypRef Expression
1 dfac3 8523 . 2
21axaci 8869 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  E.wex 1612  e.wcel 1818  =/=wne 2652  A.wral 2807   c0 3784  cfv 5593 This theorem is referenced by:  ac4c  8877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-ac2 8864 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ac 8518
 Copyright terms: Public domain W3C validator