![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ac5num | Unicode version |
Description: A version of ac5b 8879 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
ac5num |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . . . . 5 | |
2 | uniexb 6610 | . . . . 5 | |
3 | 1, 2 | sylibr 212 | . . . 4 |
4 | dfac8b 8433 | . . . 4 | |
5 | dfac8c 8435 | . . . 4 | |
6 | 3, 4, 5 | sylc 60 | . . 3 |
7 | 6 | adantr 465 | . 2 |
8 | nelne2 2787 | . . . . . . . . . . . 12 | |
9 | 8 | ancoms 453 | . . . . . . . . . . 11 |
10 | 9 | adantll 713 | . . . . . . . . . 10 |
11 | pm2.27 39 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 16 | . . . . . . . . 9 |
13 | 12 | ralimdva 2865 | . . . . . . . 8 |
14 | 13 | imp 429 | . . . . . . 7 |
15 | fveq2 5871 | . . . . . . . . 9 | |
16 | id 22 | . . . . . . . . 9 | |
17 | 15, 16 | eleq12d 2539 | . . . . . . . 8 |
18 | 17 | rspccva 3209 | . . . . . . 7 |
19 | 14, 18 | sylan 471 | . . . . . 6 |
20 | elunii 4254 | . . . . . 6 | |
21 | 19, 20 | sylancom 667 | . . . . 5 |
22 | eqid 2457 | . . . . 5 | |
23 | 21, 22 | fmptd 6055 | . . . 4 |
24 | 3 | ad2antrr 725 | . . . 4 |
25 | 1 | ad2antrr 725 | . . . 4 |
26 | fex2 6755 | . . . 4 | |
27 | 23, 24, 25, 26 | syl3anc 1228 | . . 3 |
28 | fveq2 5871 | . . . . . . . 8 | |
29 | fvex 5881 | . . . . . . . 8 | |
30 | 28, 22, 29 | fvmpt 5956 | . . . . . . 7 |
31 | 30 | eleq1d 2526 | . . . . . 6 |
32 | 31 | ralbiia 2887 | . . . . 5 |
33 | 14, 32 | sylibr 212 | . . . 4 |
34 | 23, 33 | jca 532 | . . 3 |
35 | feq1 5718 | . . . . 5 | |
36 | fveq1 5870 | . . . . . . 7 | |
37 | 36 | eleq1d 2526 | . . . . . 6 |
38 | 37 | ralbidv 2896 | . . . . 5 |
39 | 35, 38 | anbi12d 710 | . . . 4 |
40 | 39 | spcegv 3195 | . . 3 |
41 | 27, 34, 40 | sylc 60 | . 2 |
42 | 7, 41 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 A. wral 2807
cvv 3109
c0 3784 U. cuni 4249 e. cmpt 4510
We wwe 4842 dom cdm 5004 --> wf 5589
` cfv 5593 ccrd 8337 |
This theorem is referenced by: numacn 8451 ac5b 8879 ac6num 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-en 7537 df-card 8341 |
Copyright terms: Public domain | W3C validator |