![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ac6num | Unicode version |
Description: A version of ac6 8881 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
ac6num.1 |
Ref | Expression |
---|---|
ac6num |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfiu1 4360 | . . . . . . . . 9 | |
2 | 1 | nfel1 2635 | . . . . . . . 8 |
3 | ssiun2 4373 | . . . . . . . . 9 | |
4 | ssexg 4598 | . . . . . . . . . 10 | |
5 | 4 | expcom 435 | . . . . . . . . 9 |
6 | 3, 5 | syl5 32 | . . . . . . . 8 |
7 | 2, 6 | ralrimi 2857 | . . . . . . 7 |
8 | dfiun2g 4362 | . . . . . . 7 | |
9 | 7, 8 | syl 16 | . . . . . 6 |
10 | eqid 2457 | . . . . . . . 8 | |
11 | 10 | rnmpt 5253 | . . . . . . 7 |
12 | 11 | unieqi 4258 | . . . . . 6 |
13 | 9, 12 | syl6eqr 2516 | . . . . 5 |
14 | id 22 | . . . . 5 | |
15 | 13, 14 | eqeltrrd 2546 | . . . 4 |
16 | 15 | 3ad2ant2 1018 | . . 3 |
17 | simp3 998 | . . . . 5 | |
18 | necom 2726 | . . . . . . . 8 | |
19 | rabn0 3805 | . . . . . . . 8 | |
20 | df-ne 2654 | . . . . . . . 8 | |
21 | 18, 19, 20 | 3bitr3i 275 | . . . . . . 7 |
22 | 21 | ralbii 2888 | . . . . . 6 |
23 | ralnex 2903 | . . . . . 6 | |
24 | 22, 23 | bitri 249 | . . . . 5 |
25 | 17, 24 | sylib 196 | . . . 4 |
26 | 0ex 4582 | . . . . 5 | |
27 | 10 | elrnmpt 5254 | . . . . 5 |
28 | 26, 27 | ax-mp 5 | . . . 4 |
29 | 25, 28 | sylnibr 305 | . . 3 |
30 | ac5num 8438 | . . 3 | |
31 | 16, 29, 30 | syl2anc 661 | . 2 |
32 | ffn 5736 | . . . . . 6 | |
33 | 32 | anim1i 568 | . . . . 5 |
34 | 7 | 3ad2ant2 1018 | . . . . . . 7 |
35 | fveq2 5871 | . . . . . . . . 9 | |
36 | id 22 | . . . . . . . . 9 | |
37 | 35, 36 | eleq12d 2539 | . . . . . . . 8 |
38 | 10, 37 | ralrnmpt 6040 | . . . . . . 7 |
39 | 34, 38 | syl 16 | . . . . . 6 |
40 | 39 | anbi2d 703 | . . . . 5 |
41 | 33, 40 | syl5ib 219 | . . . 4 |
42 | 3 | sseld 3502 | . . . . . . . . . . 11 |
43 | 42 | ralimia 2848 | . . . . . . . . . 10 |
44 | 43 | ad2antll 728 | . . . . . . . . 9 |
45 | nfv 1707 | . . . . . . . . . 10 | |
46 | nfcsb1v 3450 | . . . . . . . . . . 11 | |
47 | 46, 1 | nfel 2632 | . . . . . . . . . 10 |
48 | csbeq1a 3443 | . . . . . . . . . . 11 | |
49 | 48 | eleq1d 2526 | . . . . . . . . . 10 |
50 | 45, 47, 49 | cbvral 3080 | . . . . . . . . 9 |
51 | 44, 50 | sylib 196 | . . . . . . . 8 |
52 | nfcv 2619 | . . . . . . . . . 10 | |
53 | 52, 46, 48 | cbvmpt 4542 | . . . . . . . . 9 |
54 | 53 | fmpt 6052 | . . . . . . . 8 |
55 | 51, 54 | sylib 196 | . . . . . . 7 |
56 | simpl1 999 | . . . . . . 7 | |
57 | simpl2 1000 | . . . . . . 7 | |
58 | fex2 6755 | . . . . . . 7 | |
59 | 55, 56, 57, 58 | syl3anc 1228 | . . . . . 6 |
60 | ssrab2 3584 | . . . . . . . . . . 11 | |
61 | 60 | sseli 3499 | . . . . . . . . . 10 |
62 | 61 | ralimi 2850 | . . . . . . . . 9 |
63 | 62 | ad2antll 728 | . . . . . . . 8 |
64 | eqid 2457 | . . . . . . . . 9 | |
65 | 64 | fmpt 6052 | . . . . . . . 8 |
66 | 63, 65 | sylib 196 | . . . . . . 7 |
67 | nfcv 2619 | . . . . . . . . . . 11 | |
68 | 67 | elrabsf 3366 | . . . . . . . . . 10 |
69 | 68 | simprbi 464 | . . . . . . . . 9 |
70 | 69 | ralimi 2850 | . . . . . . . 8 |
71 | 70 | ad2antll 728 | . . . . . . 7 |
72 | 66, 71 | jca 532 | . . . . . 6 |
73 | feq1 5718 | . . . . . . . 8 | |
74 | nfmpt1 4541 | . . . . . . . . . 10 | |
75 | 74 | nfeq2 2636 | . . . . . . . . 9 |
76 | fvex 5881 | . . . . . . . . . . 11 | |
77 | ac6num.1 | . . . . . . . . . . 11 | |
78 | 76, 77 | sbcie 3362 | . . . . . . . . . 10 |
79 | fveq1 5870 | . . . . . . . . . . . 12 | |
80 | fvex 5881 | . . . . . . . . . . . . 13 | |
81 | 64 | fvmpt2 5963 | . . . . . . . . . . . . 13 |
82 | 80, 81 | mpan2 671 | . . . . . . . . . . . 12 |
83 | 79, 82 | sylan9eq 2518 | . . . . . . . . . . 11 |
84 | 83 | sbceq1d 3332 | . . . . . . . . . 10 |
85 | 78, 84 | syl5bbr 259 | . . . . . . . . 9 |
86 | 75, 85 | ralbida 2890 | . . . . . . . 8 |
87 | 73, 86 | anbi12d 710 | . . . . . . 7 |
88 | 87 | spcegv 3195 | . . . . . 6 |
89 | 59, 72, 88 | sylc 60 | . . . . 5 |
90 | 89 | ex 434 | . . . 4 |
91 | 41, 90 | syld 44 | . . 3 |
92 | 91 | exlimdv 1724 | . 2 |
93 | 31, 92 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 =/= wne 2652 A. wral 2807
E. wrex 2808 { crab 2811 cvv 3109
[. wsbc 3327 [_ csb 3434 C_ wss 3475
c0 3784 U. cuni 4249 U_ ciun 4330
e. cmpt 4510 dom cdm 5004 ran crn 5005
Fn wfn 5588 --> wf 5589 ` cfv 5593
ccrd 8337 |
This theorem is referenced by: ac6 8881 ptcmplem3 20554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-en 7537 df-card 8341 |
Copyright terms: Public domain | W3C validator |