![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > aceq2 | Unicode version |
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
aceq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2812 | . . . . 5 | |
2 | 19.23v 1760 | . . . . 5 | |
3 | 1, 2 | bitri 249 | . . . 4 |
4 | biidd 237 | . . . . 5 | |
5 | 4 | cbvralv 3084 | . . . 4 |
6 | n0 3794 | . . . . 5 | |
7 | eleq2 2530 | . . . . . . . . 9 | |
8 | eleq2 2530 | . . . . . . . . 9 | |
9 | 7, 8 | anbi12d 710 | . . . . . . . 8 |
10 | 9 | cbvrexv 3085 | . . . . . . 7 |
11 | 10 | reubii 3044 | . . . . . 6 |
12 | eleq1 2529 | . . . . . . . . 9 | |
13 | 12 | anbi2d 703 | . . . . . . . 8 |
14 | 13 | rexbidv 2968 | . . . . . . 7 |
15 | 14 | cbvreuv 3086 | . . . . . 6 |
16 | 11, 15 | bitri 249 | . . . . 5 |
17 | 6, 16 | imbi12i 326 | . . . 4 |
18 | 3, 5, 17 | 3bitr4i 277 | . . 3 |
19 | 18 | ralbii 2888 | . 2 |
20 | 19 | exbii 1667 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
=/= wne 2652 A. wral 2807 E. wrex 2808
E! wreu 2809 c0 3784 |
This theorem is referenced by: dfac7 8533 ac3 8863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |