MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem2 Unicode version

Theorem ackbij1lem2 8622
Description: Lemma for ackbij2 8644. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem2

Proof of Theorem ackbij1lem2
StepHypRef Expression
1 df-suc 4889 . . . 4
21ineq2i 3696 . . 3
3 indi 3743 . . 3
4 uncom 3647 . . 3
52, 3, 43eqtri 2490 . 2
6 snssi 4174 . . . 4
7 sseqin2 3716 . . . 4
86, 7sylib 196 . . 3
98uneq1d 3656 . 2
105, 9syl5eq 2510 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  u.cun 3473  i^icin 3474  C_wss 3475  {csn 4029  succsuc 4885
This theorem is referenced by:  ackbij1lem15  8635  ackbij1lem16  8636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-in 3482  df-ss 3489  df-sn 4030  df-suc 4889
  Copyright terms: Public domain W3C validator