![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ad4antlr | Unicode version |
Description: Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 |
Ref | Expression |
---|---|
ad4antlr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 | |
2 | 1 | ad3antlr 730 | . 2 |
3 | 2 | adantr 465 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: ad5antlr 734 cpmatacl 19217 cpmatmcllem 19219 cpmatmcl 19220 chfacfisf 19355 chfacfisfcpmat 19356 restcld 19673 pthaus 20139 txhaus 20148 xkohaus 20154 alexsubALTlem4 20550 ustuqtop3 20746 ulmcau 22790 usgra2wlkspth 24621 clwlkisclwwlklem1 24787 usg2spot2nb 25065 locfinreflem 27843 cmpcref 27853 pstmxmet 27876 heicant 30049 mblfinlem3 30053 mblfinlem4 30054 itg2addnclem2 30067 itg2gt0cn 30070 ftc1cnnc 30089 nn0prpwlem 30140 sstotbnd2 30270 pell1234qrdich 30797 jm2.26lem3 30943 cvgdvgrat 31194 icccncfext 31690 fourierdlem34 31923 fourierdlem87 31976 etransclem35 32052 initoeu2 32622 ply1mulgsumlem2 32987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |