![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > adantlll | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 |
Ref | Expression |
---|---|
adantlll |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . 2 | |
2 | adantl2.1 | . 2 | |
3 | 1, 2 | sylanl1 650 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: fun11iun 6760 oewordri 7260 sbthlem8 7654 xmulass 11508 caucvgb 13502 clsnsg 20608 metusttoOLD 21060 metustto 21061 constr3cycl 24661 grpoidinvlem3 25208 nmoub3i 25688 riesz3i 26981 csmdsymi 27253 fin2so 30040 heicant 30049 mblfinlem2 30052 mblfinlem3 30053 ismblfin 30055 itg2addnclem 30066 ftc1anclem7 30096 ftc1anc 30098 fzmul 30233 fdc 30238 incsequz2 30242 isbnd3 30280 bndss 30282 ismtyres 30304 rngoisocnv 30384 dirkertrigeq 31883 fourierdlem12 31901 fourierdlem50 31939 fourierdlem103 31992 fourierdlem104 31993 etransclem35 32052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |