![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > adantlrr | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 |
Ref | Expression |
---|---|
adantlrr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . 2 | |
2 | adantl2.1 | . 2 | |
3 | 1, 2 | sylanl2 651 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: oelim 7203 odi 7247 marypha1lem 7913 dfac12lem2 8545 infunsdom 8615 isf34lem4 8778 distrlem1pr 9424 drsdirfi 15567 isacs3lem 15796 conjnmzb 16301 psgndif 18638 frlmsslsp 18829 frlmsslspOLD 18830 metss2lem 21014 nghmcn 21252 bndth 21458 itg2monolem1 22157 dvmptfsum 22376 ply1divex 22537 itgulm 22803 rpvmasumlem 23672 dchrmusum2 23679 dchrisum0lem2 23703 dchrisum0lem3 23704 mulog2sumlem2 23720 pntibndlem3 23777 3v3e3cycl1 24644 4cycl4v4e 24666 blocni 25720 superpos 27273 chirredlem2 27310 eulerpartlemgvv 28315 ballotlemfc0 28431 ballotlemfcc 28432 fin2solem 30039 heicant 30049 ftc1anclem6 30095 ftc1anc 30098 fdc 30238 incsequz 30241 ismtyres 30304 isdrngo2 30361 rngohomco 30377 keridl 30429 mzpcompact2lem 30684 pellex 30771 monotuz 30877 unxpwdom3 31041 radcnvrat 31195 lcmgcdlem 31212 lcmdvds 31214 fprodexp 31600 fprodabs2 31602 dvnprodlem1 31743 stoweidlem34 31816 fourierdlem42 31931 elaa2 32017 aacllem 33216 bj-finsumval0 34663 linepsubN 35476 pmapsub 35492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |