MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrl Unicode version

Theorem adantrrl 723
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1
Assertion
Ref Expression
adantrrl

Proof of Theorem adantrrl
StepHypRef Expression
1 simpr 461 . 2
2 adantr2.1 . 2
31, 2sylanr2 653 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  1stconst  6888  zorn2lem6  8902  ltmul12a  10423  mrcmndind  15997  neiint  19605  neissex  19628  1stcfb  19946  1stcrest  19954  grporcan  25223  mdslmd3i  27251  colineardim1  29711  cvratlem  35145  ps-2  35202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator