![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > adantrrr | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 |
Ref | Expression |
---|---|
adantrrr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . 2 | |
2 | adantr2.1 | . 2 | |
3 | 1, 2 | sylanr2 653 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: 2ndconst 6889 zorn2lem6 8902 addsrmo 9471 mulsrmo 9472 lemul12b 10424 lt2mul2div 10446 lediv12a 10463 tgcl 19471 neissex 19628 alexsublem 20544 alexsubALTlem4 20550 iscmet3 21732 ablo4 25289 shscli 26235 mdslmd3i 27251 cvmliftmolem2 28727 mblfinlem4 30054 heibor 30317 ablo4pnp 30342 crngm4 30400 mzpcompact2lem 30684 cvratlem 35145 ps-2 35202 cdlemftr3 36291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |