MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Unicode version

Theorem adantrrr 724
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1
Assertion
Ref Expression
adantrrr

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 457 . 2
2 adantr2.1 . 2
31, 2sylanr2 653 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  2ndconst  6889  zorn2lem6  8902  addsrmo  9471  mulsrmo  9472  lemul12b  10424  lt2mul2div  10446  lediv12a  10463  tgcl  19471  neissex  19628  alexsublem  20544  alexsubALTlem4  20550  iscmet3  21732  ablo4  25289  shscli  26235  mdslmd3i  27251  cvmliftmolem2  28727  mblfinlem4  30054  heibor  30317  ablo4pnp  30342  crngm4  30400  mzpcompact2lem  30684  cvratlem  35145  ps-2  35202  cdlemftr3  36291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator