![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > addcn2 | Unicode version |
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 19728 and df-cncf 21382 are not yet available to us. See addcn 21369 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
addcn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rphalfcl 11273 | . . 3 | |
2 | 1 | 3ad2ant1 1017 | . 2 |
3 | simprl 756 | . . . . . . . 8 | |
4 | simpl2 1000 | . . . . . . . 8 | |
5 | simprr 757 | . . . . . . . 8 | |
6 | 3, 4, 5 | pnpcan2d 9992 | . . . . . . 7 |
7 | 6 | fveq2d 5875 | . . . . . 6 |
8 | 7 | breq1d 4462 | . . . . 5 |
9 | simpl3 1001 | . . . . . . . 8 | |
10 | 4, 5, 9 | pnpcand 9991 | . . . . . . 7 |
11 | 10 | fveq2d 5875 | . . . . . 6 |
12 | 11 | breq1d 4462 | . . . . 5 |
13 | 8, 12 | anbi12d 710 | . . . 4 |
14 | addcl 9595 | . . . . . 6 | |
15 | 14 | adantl 466 | . . . . 5 |
16 | 4, 9 | addcld 9636 | . . . . 5 |
17 | 4, 5 | addcld 9636 | . . . . 5 |
18 | simpl1 999 | . . . . . 6 | |
19 | 18 | rpred 11285 | . . . . 5 |
20 | abs3lem 13171 | . . . . 5 | |
21 | 15, 16, 17, 19, 20 | syl22anc 1229 | . . . 4 |
22 | 13, 21 | sylbird 235 | . . 3 |
23 | 22 | ralrimivva 2878 | . 2 |
24 | breq2 4456 | . . . . . 6 | |
25 | 24 | anbi1d 704 | . . . . 5 |
26 | 25 | imbi1d 317 | . . . 4 |
27 | 26 | 2ralbidv 2901 | . . 3 |
28 | breq2 4456 | . . . . . 6 | |
29 | 28 | anbi2d 703 | . . . . 5 |
30 | 29 | imbi1d 317 | . . . 4 |
31 | 30 | 2ralbidv 2901 | . . 3 |
32 | 27, 31 | rspc2ev 3221 | . 2 |
33 | 2, 2, 23, 32 | syl3anc 1228 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 caddc 9516 clt 9649 cmin 9828 cdiv 10231 2 c2 10610 crp 11249
cabs 13067 |
This theorem is referenced by: subcn2 13417 climadd 13454 rlimadd 13465 addcn 21369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 |
Copyright terms: Public domain | W3C validator |