![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > addid2 | Unicode version |
Description: is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex 9782 | . 2 | |
2 | cnegex 9782 | . . . 4 | |
3 | 2 | ad2antrl 727 | . . 3 |
4 | 0cn 9609 | . . . . . . . . . 10 | |
5 | addass 9600 | . . . . . . . . . 10 | |
6 | 4, 4, 5 | mp3an12 1314 | . . . . . . . . 9 |
7 | 6 | adantr 465 | . . . . . . . 8 |
8 | 7 | 3ad2ant3 1019 | . . . . . . 7 |
9 | 00id 9776 | . . . . . . . . 9 | |
10 | 9 | oveq1i 6306 | . . . . . . . 8 |
11 | simp1 996 | . . . . . . . . . . 11 | |
12 | simp2l 1022 | . . . . . . . . . . 11 | |
13 | simp3l 1024 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | addassd 9639 | . . . . . . . . . 10 |
15 | simp2r 1023 | . . . . . . . . . . 11 | |
16 | 15 | oveq1d 6311 | . . . . . . . . . 10 |
17 | simp3r 1025 | . . . . . . . . . . 11 | |
18 | 17 | oveq2d 6312 | . . . . . . . . . 10 |
19 | 14, 16, 18 | 3eqtr3rd 2507 | . . . . . . . . 9 |
20 | addid1 9781 | . . . . . . . . . 10 | |
21 | 20 | 3ad2ant1 1017 | . . . . . . . . 9 |
22 | 19, 21 | eqtr3d 2500 | . . . . . . . 8 |
23 | 10, 22 | syl5eq 2510 | . . . . . . 7 |
24 | 22 | oveq2d 6312 | . . . . . . 7 |
25 | 8, 23, 24 | 3eqtr3rd 2507 | . . . . . 6 |
26 | 25 | 3expia 1198 | . . . . 5 |
27 | 26 | expd 436 | . . . 4 |
28 | 27 | rexlimdv 2947 | . . 3 |
29 | 3, 28 | mpd 15 | . 2 |
30 | 1, 29 | rexlimddv 2953 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
E. wrex 2808 (class class class)co 6296
cc 9511 0 cc0 9513 caddc 9516 |
This theorem is referenced by: addcan 9785 addid2i 9789 addid2d 9802 negneg 9892 uzindOLD 10982 fzoaddel2 11874 modid 12020 swrds1 12676 isercolllem3 13489 sumrblem 13533 summolem2a 13537 fsum0diag2 13598 eftlub 13844 gcdid 14169 cnaddablx 16874 cnaddabl 16875 cncrng 18439 ptolemy 22889 logtayl 23041 leibpilem2 23272 axcontlem2 24268 usgraexvlem 24395 cnaddablo 25352 cnid 25353 dvcosax 31723 2zrngamnd 32747 aacllem 33216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |