![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > addnqf | Unicode version |
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addnqf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 9329 | . . . 4 | |
2 | addpqf 9343 | . . . 4 | |
3 | fco 5746 | . . . 4 | |
4 | 1, 2, 3 | mp2an 672 | . . 3 |
5 | elpqn 9324 | . . . . 5 | |
6 | 5 | ssriv 3507 | . . . 4 |
7 | xpss12 5113 | . . . 4 | |
8 | 6, 6, 7 | mp2an 672 | . . 3 |
9 | fssres 5756 | . . 3 | |
10 | 4, 8, 9 | mp2an 672 | . 2 |
11 | df-plq 9313 | . . 3 | |
12 | 11 | feq1i 5728 | . 2 |
13 | 10, 12 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: C_ wss 3475 X. cxp 5002
|` cres 5006 o. ccom 5008 --> wf 5589
cnpi 9243 cplpq 9247 cnq 9251
cerq 9253
cplq 9254 |
This theorem is referenced by: addcomnq 9350 adderpq 9355 addassnq 9357 distrnq 9360 ltanq 9370 ltexnq 9374 nsmallnq 9376 ltbtwnnq 9377 prlem934 9432 ltaddpr 9433 ltexprlem2 9436 ltexprlem3 9437 ltexprlem4 9438 ltexprlem6 9440 ltexprlem7 9441 prlem936 9446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-1nq 9315 |
Copyright terms: Public domain | W3C validator |