![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > addsrmo | Unicode version |
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
Ref | Expression |
---|---|
addsrmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 9463 | . . . . . . . . . . . . . . . 16 | |
2 | 1 | a1i 11 | . . . . . . . . . . . . . . 15 |
3 | prsrlem1 9470 | . . . . . . . . . . . . . . . 16 | |
4 | addcmpblnr 9467 | . . . . . . . . . . . . . . . . 17 | |
5 | 4 | imp 429 | . . . . . . . . . . . . . . . 16 |
6 | 3, 5 | syl 16 | . . . . . . . . . . . . . . 15 |
7 | 2, 6 | erthi 7377 | . . . . . . . . . . . . . 14 |
8 | 7 | adantrlr 722 | . . . . . . . . . . . . 13 |
9 | 8 | adantrrr 724 | . . . . . . . . . . . 12 |
10 | simprlr 764 | . . . . . . . . . . . 12 | |
11 | simprrr 766 | . . . . . . . . . . . 12 | |
12 | 9, 10, 11 | 3eqtr4d 2508 | . . . . . . . . . . 11 |
13 | 12 | expr 615 | . . . . . . . . . 10 |
14 | 13 | exlimdvv 1725 | . . . . . . . . 9 |
15 | 14 | exlimdvv 1725 | . . . . . . . 8 |
16 | 15 | ex 434 | . . . . . . 7 |
17 | 16 | exlimdvv 1725 | . . . . . 6 |
18 | 17 | exlimdvv 1725 | . . . . 5 |
19 | 18 | impd 431 | . . . 4 |
20 | 19 | alrimivv 1720 | . . 3 |
21 | opeq12 4219 | . . . . . . . . . . 11 | |
22 | 21 | eceq1d 7367 | . . . . . . . . . 10 |
23 | 22 | eqeq2d 2471 | . . . . . . . . 9 |
24 | 23 | anbi1d 704 | . . . . . . . 8 |
25 | simpl 457 | . . . . . . . . . . . 12 | |
26 | 25 | oveq1d 6311 | . . . . . . . . . . 11 |
27 | simpr 461 | . . . . . . . . . . . 12 | |
28 | 27 | oveq1d 6311 | . . . . . . . . . . 11 |
29 | 26, 28 | opeq12d 4225 | . . . . . . . . . 10 |
30 | 29 | eceq1d 7367 | . . . . . . . . 9 |
31 | 30 | eqeq2d 2471 | . . . . . . . 8 |
32 | 24, 31 | anbi12d 710 | . . . . . . 7 |
33 | opeq12 4219 | . . . . . . . . . . 11 | |
34 | 33 | eceq1d 7367 | . . . . . . . . . 10 |
35 | 34 | eqeq2d 2471 | . . . . . . . . 9 |
36 | 35 | anbi2d 703 | . . . . . . . 8 |
37 | simpl 457 | . . . . . . . . . . . 12 | |
38 | 37 | oveq2d 6312 | . . . . . . . . . . 11 |
39 | simpr 461 | . . . . . . . . . . . 12 | |
40 | 39 | oveq2d 6312 | . . . . . . . . . . 11 |
41 | 38, 40 | opeq12d 4225 | . . . . . . . . . 10 |
42 | 41 | eceq1d 7367 | . . . . . . . . 9 |
43 | 42 | eqeq2d 2471 | . . . . . . . 8 |
44 | 36, 43 | anbi12d 710 | . . . . . . 7 |
45 | 32, 44 | cbvex4v 2034 | . . . . . 6 |
46 | 45 | anbi2i 694 | . . . . 5 |
47 | 46 | imbi1i 325 | . . . 4 |
48 | 47 | 2albii 1641 | . . 3 |
49 | 20, 48 | sylibr 212 | . 2 |
50 | eqeq1 2461 | . . . . 5 | |
51 | 50 | anbi2d 703 | . . . 4 |
52 | 51 | 4exbidv 1718 | . . 3 |
53 | 52 | mo4 2337 | . 2 |
54 | 49, 53 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 E* wmo 2283 <. cop 4035
class class class wbr 4452 X. cxp 5002
(class class class)co 6296 Er wer 7327
[ cec 7328 /. cqs 7329 cnp 9258
cpp 9260
cer 9263 |
This theorem is referenced by: addsrpr 9473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ec 7332 df-qs 7336 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-plp 9382 df-ltp 9384 df-enr 9454 |
Copyright terms: Public domain | W3C validator |