![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > aecom-o | Unicode version |
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when and are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2051 using ax-c11 2218. Unlike axc11nfromc11 2256, this version does not require ax-5 1704. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aecom-o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c11 2218 | . . 3 | |
2 | 1 | pm2.43i 47 | . 2 |
3 | equcomi 1793 | . . 3 | |
4 | 3 | alimi 1633 | . 2 |
5 | 2, 4 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393 |
This theorem is referenced by: aecoms-o 2231 naecoms-o 2257 aev-o 2261 ax12indalem 2275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-c11 2218 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |