MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecom-o Unicode version

Theorem aecom-o 2230
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when and are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2051 using ax-c11 2218. Unlike axc11nfromc11 2256, this version does not require ax-5 1704. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
aecom-o

Proof of Theorem aecom-o
StepHypRef Expression
1 ax-c11 2218 . . 3
21pm2.43i 47 . 2
3 equcomi 1793 . . 3
43alimi 1633 . 2
52, 4syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  aecoms-o  2231  naecoms-o  2257  aev-o  2261  ax12indalem  2275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-c11 2218
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator