MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecom Unicode version

Theorem aecom 2051
Description: Commutation law for identical variable specifiers. Both sides of the biconditional are true when and are substituted with the same variable. (Contributed by NM, 10-May-1993.) Changed to a biconditional. (Revised by BJ, 26-Sep-2019.)
Assertion
Ref Expression
aecom

Proof of Theorem aecom
StepHypRef Expression
1 axc11n 2049 . 2
2 axc11n 2049 . 2
31, 2impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  A.wal 1393
This theorem is referenced by:  aecoms  2052  naecoms  2053  wl-nfae1  29980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator