MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecoms Unicode version

Theorem aecoms 2052
Description: A commutation rule for identical variable specifiers. (Contributed by NM, 10-May-1993.)
Hypothesis
Ref Expression
aecoms.1
Assertion
Ref Expression
aecoms

Proof of Theorem aecoms
StepHypRef Expression
1 aecom 2051 . 2
2 aecoms.1 . 2
31, 2sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  axc11  2054  nd4  8986  axrepnd  8990  axpowndlem3OLD  8997  axpownd  8999  axregnd  9002  axregndOLD  9003  axinfnd  9005  axacndlem5  9010  axacnd  9011  wl-ax11-lem1  30025  wl-ax11-lem3  30027  wl-ax11-lem9  30033  wl-ax11-lem10  30034  e2ebind  33336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator