![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > aev | Unicode version |
Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 1842. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 1999, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) |
Ref | Expression |
---|---|
aev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aevlem1 1939 | . . 3 | |
2 | ax6ev 1749 | . . . 4 | |
3 | ax-7 1790 | . . . . 5 | |
4 | 3 | aleximi 1653 | . . . 4 |
5 | 2, 4 | mpi 17 | . . 3 |
6 | ax5e 1706 | . . 3 | |
7 | 1, 5, 6 | 3syl 20 | . 2 |
8 | axc16g 1940 | . 2 | |
9 | 7, 8 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
E. wex 1612 |
This theorem is referenced by: ax16nf 1944 axc16gALT 2106 2ax6e 2194 wl-naev 29982 wl-ax11-lem2 30026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |