![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > albidh | Unicode version |
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidh.1 | |
albidh.2 |
Ref | Expression |
---|---|
albidh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albidh.1 | . . 3 | |
2 | albidh.2 | . . 3 | |
3 | 1, 2 | alrimih 1642 | . 2 |
4 | albi 1639 | . 2 | |
5 | 3, 4 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 |
This theorem is referenced by: albidv 1713 albid 1885 dral2-o 2260 ax12indalem 2275 ax12inda2ALT 2276 ax12inda 2278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |